首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98101篇
  免费   6065篇
  国内免费   15034篇
化学   78748篇
晶体学   1361篇
力学   2799篇
综合类   968篇
数学   14345篇
物理学   20979篇
  2024年   42篇
  2023年   736篇
  2022年   1258篇
  2021年   1981篇
  2020年   2479篇
  2019年   2377篇
  2018年   2100篇
  2017年   2968篇
  2016年   3172篇
  2015年   2639篇
  2014年   3769篇
  2013年   7434篇
  2012年   7027篇
  2011年   5550篇
  2010年   4703篇
  2009年   6420篇
  2008年   6694篇
  2007年   6961篇
  2006年   6338篇
  2005年   5422篇
  2004年   5026篇
  2003年   4211篇
  2002年   5398篇
  2001年   3211篇
  2000年   3002篇
  1999年   2686篇
  1998年   2090篇
  1997年   1700篇
  1996年   1422篇
  1995年   1614篇
  1994年   1437篇
  1993年   1163篇
  1992年   1164篇
  1991年   785篇
  1990年   653篇
  1989年   592篇
  1988年   435篇
  1987年   343篇
  1986年   319篇
  1985年   251篇
  1984年   259篇
  1983年   138篇
  1982年   215篇
  1981年   170篇
  1980年   188篇
  1979年   168篇
  1978年   146篇
  1977年   92篇
  1976年   74篇
  1973年   44篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The copper‐mediated atom transfer radical polymerization of methyl methacrylate (MMA) in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) was studied to simultaneously control the molecular weight and tacticity. The polymerization using tris[2‐(dimethylamino)ethyl]amine (Me6TREN) as a ligand was performed even at ?78°C with a number‐average molecular weight (Mn) of 13,400 and a polydispersity (weight‐average molecular weight/number‐average molecular weight) of 1.31, although the measured Mn's were much higher than the theoretical ones. The addition of copper(II) bromide (CuBr2) apparently affected the early stage of the polymerization; that is, the polymerization could proceed in a controlled manner under the condition of [MMA]0/[methyl α‐bromoisobutyrate]0/[CuBr]0/[CuBr2]0/[Me6TREN]0 = 200/1/1/0.2/1.2 at ?20°C with an MMA/HFIP ratio of 1/4 (v/v). For the field desorption mass spectrum of CuIBr/Me6TREN in HFIP, there were [Cu(Me6TREN)Br]+ and [Cu(Me6TREN)OCH(CF3)2]+, indicating that HFIP should coordinate to the CuI/Me6TREN complex. The syndiotacticity of the obtained poly(methyl methacrylate)s increased with the decreasing polymerization temperature; the racemo content was 84% for ?78°C, 77% for ?30°C, 75% for ?20°C, and 63% for 30°C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1436–1446, 2006  相似文献   
992.
Poly(9,9‐dihexylfluorene‐2,7‐vinylene‐alt‐dibenzothiophene‐2,8‐vinylene) (PS) and poly(9,9‐dihexylfluorene‐2,7‐vinylene‐alt‐dibenzothiophene‐5,5‐dioxide‐2,8‐ vinylene) (PSO) as well as corresponding model compounds were synthesized by Heck coupling. Both the polymers and model compounds were readily soluble in common organic solvents such as tetrahydrofuran, dichloromethane, chloroform, and toluene. The polymers showed a decomposition temperature at ~430 °C and a char yield of about 65% at 800 °C in N2. The glass‐transition temperatures of the polymers were almost identical (75–77 °C) and higher than those of the model compounds (26–45 °C). All samples absorbed around 390 nm, and their optical band gaps were 2.69–2.85 eV. They behaved as blue‐greenish light emitting materials in both solutions and thin films, with photoluminescence emission maxima at 450–483 nm and photoluminescence quantum yields of 0.52–0.72 in solution. Organic light‐emitting diodes with an indium tin oxide/poly(ethylene dioxythiophene):poly(styrene sulfonic acid)/polymer/Mg:Ag/Ag configuration with polymers PS and PSO as emitting layers showed green electroluminescence with maxima at 530 and 540 nm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6790–6800, 2006  相似文献   
993.
Mechanisms and simulations of the induction period and the initial polymerization stages in the nitroxide‐mediated autopolymerization of styrene are discussed. At 120–125 °C and moderate 2,2,4,4‐tetramethyl‐1‐piperidinyloxy (TEMPO) concentrations (0.02–0.08 M), the main source of radicals is the hydrogen abstraction of the Mayo dimer by TEMPO [with the kinetic constant of hydrogen abstraction (kh)]. At higher TEMPO concentrations ([N?] > 0.1 M), this reaction is still dominant, but radical generation by the direct attack against styrene by TEMPO, with kinetic constant of addition kad, also becomes relevant. From previous experimental data and simulations, initial estimates of kh ≈ 1 and kad ≈ 6 × 10?7 L mol?1 s?1 are obtained at 125 °C. From the induction period to the polymerization regime, there is an abrupt change in the dominant mechanism generating radicals because of the sudden decrease in the nitroxide radicals. Under induction‐period conditions, the simulations confirm the validity of the quasi‐steady‐state assumption (QSSA) for the Mayo dimer in this regime; however, after the induction period, the QSSA for the dimer is not valid, and this brings into question the scientific basis of the well‐known expression kth[M]3 (where [M] is the monomer concentration and kth is the kinetic constant of autoinitiation) for the autoinitiation rate in styrene polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6962‐6979, 2006  相似文献   
994.
995.
996.
The synthesis of polymer‐matrix‐compatible amphiphilic gold (Au) nanoparticles with well‐defined triblock polymer poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] and diblock polymers poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], polystyrene‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], and poly(t‐butyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] in water and in aqueous tetrahydrofuran (tetrahydrofuran/H2O = 20:1 v/v) at room temperature is reported. All these amphiphilic block copolymers were synthesized with atom transfer radical polymerization. The variations of the position of the plasmon resonance band and the core diameter of such block copolymer functionalized Au particles with the variation of the surface functionality, solvent, and molecular weight of the hydrophobic and hydrophilic parts of the block copolymers were systematically studied. Different types of polymer–Au nanocomposite films [poly(methyl methacrylate)–Au, poly(t‐butyl methacrylate)–Au, polystyrene–Au, poly(vinyl alcohol)–Au, and poly(vinyl pyrrolidone)–Au] were prepared through the blending of appropriate functionalized Au nanoparticles with the respective polymer matrices {e.g., blending poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate‐stabilized Au with the poly(methyl methacrylate)matrix only}. The compatibility of specific block copolymer modified Au nanoparticles with a specific homopolymer matrix was determined by a combination of ultraviolet–visible spectroscopy, transmission electron microscopy, and differential scanning calorimetry analyses. The facile formation of polymer–Au nanocomposites with a specific block copolymer stabilized Au particle was attributed to the good compatibility of block copolymer coated Au particles with a specific polymer matrix. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1841–1854, 2006  相似文献   
997.
998.
A laboratory‐scale continuous reaction system using a stirred tank reactor was assembled in our laboratory to study the dispersion polymerization of vinyl monomers in supercritical carbon dioxide (scCO2). The apparatus was equipped with a suitable downstream separation section to collect solid particles entrained in the effluent stream from the reactor, whose monomer concentration could be measured online with a gas chromatograph. The dispersion polymerization of methyl methacrylate in scCO2 was selected as a model process to be investigated in the apparatus. The experiments were performed at 65 °C and 25 MPa with 2,2′‐azobisisobutyronitrile as the initiator and a reactive polysiloxane macromonomer as a surfactant to investigate the effect of the mean residence time of the reaction mixture on the monomer conversion, polymerization rate, polymer molecular weight, and particle size distribution. The results were compared with those obtained in batch polymerizations carried out under similar operative conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4122–4135, 2006  相似文献   
999.
Diblock copolymers of 5‐(methylphthalimide)bicyclo[2.2.1]hept‐2‐ene (NBMPI) and 1,5‐cyclooctadiene were synthesized by living ring‐opening metathesis polymerization with a well‐defined catalyst {RuCl2(CHPh)[P(C6H11)3]2}. Unhydrogenated diblock copolymers showed two glass transitions due to poly(NBMPI) and polybutadiene segments, such as two glass‐transition temperatures at ?86.5 and 115.3 °C for poly 1a and ?87.2 and 115.3 °C for poly 1b . However, only one melting temperature could be observed for hydrogenated copolymers, such as 119.8 °C for poly 2a and 121.7 °C for poly 2b . The unhydrogenated diblock copolymer with the longer poly(NBMPI) chain (poly 1a ; temperature at 10% mass loss = 400 °C) exhibited better thermal stability than the one with the shorter poly(NBMPI) chain (poly 1b ; temperature at 10% mass loss = 385 °C). Two kinds of hydrogenated diblock copolymers, poly 2a and poly 2b , exhibited relatively poor solubility but better thermal stability than unhydrogenated diblock copolymers because of the polyethylene segments. Poly[(hydrochloride quaternized 2‐norbornene‐5‐methyleneamine)‐b‐butadiene]‐1 (poly 3a ) was obtained after the hydrolysis and quaternization of poly 1a . Dynamic light scattering measurements indicated that the hydrodynamic diameters of the cationic copolymer (poly 3a ) in water (hydrodynamic diameter = 1580 nm without salt), methanol/water (4/96 v/v; hydrodynamic diameter = 1500 nm without salt), and tetrahydrofuran/water (4/96 v/v; hydrodynamic diameter = 1200 nm without salt) decreased with increasing salt (NaCl) concentration. The effect of temperature on the hydrodynamic diameter of hydrophobically modified poly 3a was also studied. The inflection point of the hydrodynamic diameter of poly 3a was observed at various polymer concentrations around 30 °C. The critical micelle concentration of hydrophobically modified poly 3a was observed at 0.018 g dL?1. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2901–2911, 2006  相似文献   
1000.
Anionic polymerization of N‐methoxymethyl‐N‐isopropylacrylamide ( 1 ) was carried out with 1,1‐diphenyl‐3‐methylpentyllithium and diphenylmethyllithium, ‐potassium, and ‐cesium in THF at ?78 °C for 2 h in the presence of Et2Zn. The poly( 1 )s were quantitatively obtained and possessed the predicted molecular weights based on the feed molar ratios between monomer to initiators and narrow molecular weight distributions (Mw/Mn = 1.1). The living character of propagating carbanion of poly( 1 ) either at 0 or ?78 °C was confirmed by the quantitative efficiency of the sequential block copolymerization using N,N‐diethylacrylamide as a second monomer. The methoxymethyl group of the resulting poly( 1 ) was completely removed to give a well‐defined poly(N‐isopropylacrylamide), poly(NIPAM), via the acidic hydrolysis. The racemo diad contents in the poly(NIPAM)s could be widely changed from 15 to 83% by choosing the initiator systems for 1 . The poly(NIPAM)s obtained with Li+/Et2Zn initiator system possessed syndiotactic‐rich configurations (r = 75–83%), while either atactic (r = 50%) or isotactic poly(NIPAM) (r = 15–22%) was generated with K+/Et2Zn or Li+/LiCl initiator system, respectively. Atactic and syndiotactic poly(NIPAM)s (42 < r < 83%) were water‐soluble, whereas isotactic‐rich one (r < 31%) was insoluble in water. The cloud points of the aqueous solution of poly(NIPAM)s increased from 32 to 37 °C with the r‐contents. These indicated the significant effect of stereoregularity of the poly(NIPAM) on the water‐solubility and the cloud point in water © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4832–4845, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号